Iterative operator-splitting methods for nonlinear differential equations and applications of deposition processes
نویسندگان
چکیده
In this article we consider iterative operator-splitting methods for nonlinear differential equations. The main feature of the proposed idea is the embedding of Newton’s method for solving the split parts of the nonlinear equation at each step. The convergence properties of such a mixed method are studied and demonstrated. We confirm with numerical applications the effectiveness of the proposed scheme in comparison with the standard operator-splitting methods by providing improved results and convergence rates. We apply our results to deposition processes. Keyword numerical analysis, operator-splitting method, initial value problems, iterative solver method, stability analysis, convection-diffusion-reaction equation. AMS subject classifications. 35J60, 35J65, 65M99, 65N12, 65Z05, 74S10, 76R50.
منابع مشابه
Operator-splitting methods in respect of eigenvalue problems for nonlinear equations and applications for Burgers equations
In this article we consider iterative operator-splitting methods for nonlinear differential equations with respect to their eigenvalues. The main feature of the proposed idea is the fixed-point iterative scheme that linearizes our underlying equations. Based on the approximated eigenvalues of such linearized systems we choose the order of the the operators for our iterative splitting scheme. Th...
متن کاملA new iteration method for solving a class of Hammerstein type integral equations system
In this work, a new iterative method is proposed for obtaining the approximate solution of a class of Hammerstein type Integral Equations System. The main structure of this method is based on the Richardson iterative method for solving an algebraic linear system of equations. Some conditions for existence and unique solution of this type equations are imposed. Convergence analysis and error bou...
متن کاملIterative operator-splitting methods for unbounded operators: Error analysis and examples
In this paper we describe an iterative operator-splitting method for unbounded operators. We derive error bounds for iterative splitting methods in the presence of unbounded operators and semigroup operators. Here mixed applications of hyperbolic and parabolic type are allowed and discussed in the applications. Mixed experiments are applied to ordinary differential equations and evolutionary Sc...
متن کاملExact Solution for Nonlinear Local Fractional Partial Differential Equations
In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...
متن کاملStochastic differential inclusions of semimonotone type in Hilbert spaces
In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...
متن کامل